|
|
|
Vol 21. N°3. 2020 | Julio-Septiembre de 2020
ARTÍCULOS ORIGINALES - ALIMENTOS
DIFUSIÓN Y GESTIÓN DE LA BASE DE DATOS DE POLIFENOLES DESARROLLADA EN ARGENTINA: ARFENOL-FOODS
Autores: MARÍA NATALIA BASSETT, MARÍA CONSTANZA ROSSI, NORMA CRISTINA SAMMÁN
RESUMEN
Introducción: en Argentina no hay disponible información sistemática sobre el contenido de polifenoles de sus alimentos. Se desarrolló una base de datos de polifenoles, ARFenolFoods, que recopila información de publicaciones científicas e informes de datos de contenido de polifenoles en alimentos locales generados analíticamente en laboratorios en diferentes regiones del país. Objetivos: el objetivo de este trabajo es la difusión, uso y gestión de la base de datos ARFenol-Foods. Materiales y métodos: la base de datos es una herramienta electrónica abierta a través de una interfaz web fácil de usar, que permite consultas simples o complejas. Está disponible en línea a través de un sitio web de INSIBIO: http://insibio.org.ar/ar-fenolesapp/. Incluyó el contenido de polifenoles totales y los subgrupos informados en la bibliografía. Resultados: el programa proporciona la entrada a través del alimento común y esto conduce a otra ventana donde se encuentran los diferentes registros con una breve descripción, el contenido de polifenoles y el origen de los datos. En el caso de las papas o tomates andinos, no sólo no hay información en las bases de datos internacionales, sino que también es importante determinar la variabilidad dentro del mismo grupo debido a la gran biodiversidad. La base de datos contiene información de 25 variedades y 14 accesiones respectivamente; es posible obtener el rango y el valor medio de ellos. Además, el software permite comparar los datos entre diferentes bases de datos disponibles. Conclusiones: la base de datos ARFenol-Foods es útil para los científicos de alimentos, fabricantes de alimentos, dietistas y profesionales de la salud, entre otros usuarios, para estimar la ingesta de compuestos fenólicos totales y su contribución relacionada de alimentos en las poblaciones de la región.
PALABRAS CLAVE: base de datos; manejo; compuestos fenólicos; usuario; Argentina.
REFERENCIAS: 1. Charrondiere UR, Rittenschober D, Nowak V, Stadlmayr B, Wijesinha-Bettoni R, Haytowitz D. Improving food composition data quality: three new FAO/INFOODS guidelines on conversions, data evaluation and food matching. Food Chemistry 2016; 193:75-81. 2. Greenfield H, Southgate DA. Food composition data: production, management, and use: Food & Agriculture Org 2003. 3. Westenbrink S, Roe M, Oseredczuk M, Castanheira I, Finglas P. EuroFIR quality approach for managing food composition data; where are we in 2014? Food Chemistry 2016; 193:69-74. 4. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects. A review. Journal of Functional Foods 2015; 18:820-897. 5. Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition 2010; 64(S3), S112. 6. Bravo L, Goya L, Lecumberri E. LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Research International 2007; 40(3):393-405. 7. Rossi M, Bassett M, Sammán N. Dietary nutritional profile and phenolic compounds consumption in school children of highlands of Argentine Northwest. Food Chemistry 2018; 238:111-116. 8. FAO/INFOODS. FAO/INFOODS guidelines for checking food composition data prior to the publication of a user table/database. Online. Rome: FAO 2012. Disponible en: http://www.fao.org/fileadmin/templates/food_composition/documents/pdf/Guidelines_data_checking2012.pdf. 9. Murphy SP, Charrondiere UR, Burlingame B. Thirty years of progress in harmonizing and compiling food data as a result of the establishment of INFOODS. Food Chem 2016; 193:2-5. DOI: 10.1016/j.foodchem.2014.11.097. 10. Ireland J, Møller A. What's New in LanguaL™. Procedia Food Science, 2013; 2:117-121. 11. Ireland JD, Møller A. LanguaL food description: a learning process. European Journal of Clinical Nutrition 2010; 64(S3), S44. 12. LanguaL. The International Framework for Food Description. 2014. Disponible en: http://www.langual.org. Último acceso: 05/10/20. 13. Costamagna MS, Ordoñez RM, Zampini IC, Sayago JE, Isla MI. Nutritional and antioxidant properties of Geoffroea decorticans, an Argentinean fruit, and derived products (flour, arrope, decoction and hydroalcoholic beverage). Food Research International 2013; Vol. 54 Nº 1:160-168. DOI: 10.1016/j.foodres.2013.05.038. 14. Orqueda ME, Rivas M, Zampini IC, Alberto MR, Torres S, Cuello S, Isla MI. Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress. Food Chem 2017; 216, 70-79. DOI: 10.1016/j.foodchem.2016.08.015. 15. Orqueda ME, Zampini IC, Torres S, Alberto MR, Ramos LLP, Schmeda-Hirschmann G, Isla MI. Chemical and functional characterization of skin, pulp and seed powder from the Argentine native fruit mistol (Ziziphus mistol). Effects of phenolic fractions on key enzymes involved in metabolic syndrome and oxidative stress. Journal of Functional Foods 2017; 37:531-540. 16. Cardozo Junior EL, Morand C. Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health. Journal of Functional Foods 2016; 21:440-454. DOI: 10.1016/j.jff.2015.12.010. 17. Naranjo RDDP, Otaiza S, Saragusti AC, Baroni V, Carranza ADV, Peralta IE, Asis R. Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chemistry 2016; 206:146-155. 18. Aizen MA, Garibaldi LA, Dondo M. Expansión de la soja y diversidad de la agricultura argentina. Ecología Austral 2009; 19(1):45-54. 19. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology 2013; 51:15-25. 20. Neveu V, Pérez-Jiménez J, Vos F, Crespy V, Du Chaffaut L, Mennen L, Wishart D. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010; 2010: bap024. 21. Charrondiere UR, Burlingame B. Report on the FAO/INFOODS Compilation Tool: A simple system to manage food composition data. Journal of Food Composition and Analysis 2011; 24(4-5):711-715.
DISSEMINATION AND MANAGEMENT OF THE POLYPHENOL DATABASE DEVELOPED IN ARGENTINA: ARFENOL-FOODS
SUMMARY
Introduction: in Argentina, there is no systematic information about the polyphenol content of their food. A polyphenol database, ARFenol-Foods, was developed compiling information from peer-reviewed scientific publications and reports of polyphenols data in several local foods generated analytically in laboratories in different regions of the country. Objectives: the aim of this work is the diffusion, use and management of the ARFenol-Foods database. Materials and methods: the database is an open electronic tool through an easy-to-use web interface, which allows simple or complex queries. It is available online through a website of INSIBIO http://insibio.org.ar/ar-fenoles-app/. The content of total polyphenols and the subgroups reported in the bibliography were included. Results: the program provides the entry through of the common food and this leads to another window where the different registers are with a brief description, the polyphenol content and the origin of the data. In the case of Andean potatoes or tomatoes, not only there is no information in international databases, but also it is also important to determine the variability within the same group because the great biodiversity. The database contains information of 25 varieties and 14 accessions, respectively; and its possible obtained the range and mean value of them. In addition, the software allows compare the data between different databases available. Conclusions: the ARFenol-Foods database would be beneficial and useful for food scientists, food manufacturers, dieticians or health-care professionals among other users, to estimate the intake of total phenolic and their related contribution of foods in populations from the region.
Key words: database; management; phenolic compounds; user; Argentina.
DESCARGAR TEXTO COMPLETO EN PDF
|
|
|
|