Vol 20. N°3. 2019  |  Julio-Septiembre de 2019


REVISIÓN SISTEMÁTICA - ALIMENTOS


EFECTOS DE DIFERENTES FUENTES DE ÁCIDOS GRASOS N-3 (CHÍA, VEGETAL Y MARINA, ANIMAL) SOBRE COMPONENTES DEL SÍNDROME METABÓLICO EN MODELOS EXPERIMENTALES (RATAS/RATONES)


Autores: DAIANA GISEL MARANO, PAMELA ROCÍO FERNÁNDEZ, MARÍA EUGENIA D'ALESSANDRO


RESUMEN

Introducción: el síndrome metabólico (SM) constituye una constelación de factores interrelacionados que elevan el riesgo de padecer enfermedad cardiovascular y diabetes mellitus tipo 2. La composición de la dieta es crucial en la modifcación de estos factores. Numerosos trabajos focalizaron su atención en fuentes de ácidos grasos n-3 de origen marino (animal) en el manejo de estos trastornos, pero más escasos y contemporá- neos son aquellos de fuentes n-3 de origen vegetal.
Objetivos: realizar un análisis crítico de la evidencia científca experimental de los efectos de una fuente vegetal (Salvia hispanica L. -chía-) y otra animal (marina) de ácidos grasos n-3 sobre alteraciones metabólicas presentes en el SM.
Materiales y métodos: estudio descriptivo y observacional aplicado a una muestra de 32 artículos científcos. Se analizaron los efectos de diferentes fuentes de ácidos grasos n-3 (aceite/ semilla de chía y aceites marinos) sobre diferentes parámetros relacionados al SM en modelos experimentales inducidos por dietas ricas en azúcares simples y/o grasas.
Resultados: ambas fuentes de n-3 mejoran los niveles de triglicéridos, colesterol total y ácidos grasos libres plasmáticos, glucemia, sensibilidad insulínica, peso del tejido adiposo (visceral), presión arterial sistólica, tamaño de adipocitos, triglicéridos hepáticos, marcadores proin?amatorios, tolerancia a la glucosa y actividad de enzimas lipogénicas y antioxidantes.
Conclusiones: la fuente vegetal y marina de n-3 mostró efectos benefciosos sobre algunos factores de riesgo del SM, y se postula a la semilla/aceite de chía como una alternativa novedosa frente a la tradicional fuente marina en el manejo de estos trastornos.

PALABRAS CLAVE: síndrome metabólico experimental; ácidos grasos n-3; aceite/semilla de chía; aceite de pescado.

REFERENCIAS:
1. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome. A new world-wide definition. A consensus statement from the In-ternational Diabetes Federation. Diabet Med 2006; 23 (5): 469-480.
2. Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endrocr Rev 2008; 29 (7): 777-822.
3. Carrier A. Metabolic syndrome and oxidative stress: a complex relationship. Antioxid Redox Signal 2017; 26 (9): 429-431.
4. Kotronen A, Westerbacka J, Bergholm R, Pietiläinen KH, Yki-Järvinen H. Liver fat in the metabolic syndrome. J Clin Endo-crinol Metab 2007; 92 (9): 3490-3497.
5. Vykoukal D, Davies MG. Vascular biology of metabolic syn-drome. J Vasc Surg 2011; 54 (3): 819-831.
6. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28 (4): 629-636.
7. Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the united states, na-tional health and nutrition examination survey, 1988-2012. Prev chronic dis 2017; 14: E24; doi: 10.5888/pcd14.160287.
8. Díaz A, Espeche W, March C, y col. Prevalencia del síndro-me metabólico en Argentina en los últimos 25 años: revisión sistemática de estudios observacionales poblacionales. Hiper-tens Riesgo Vasc 2018; 23 (2): 64-69.
9. Reaven GM, Risser TR, Chen YD, Reaven EP. Characterization of a model of dietary-induced hypertriglyceridemia in young, nonobese rats. J Lipid Res 1979; 20 (3): 371-378.
10. Lombardo YB, Chicco A, Mocchiutti N, De Rodi MA, Nusimo-vich B, Gutman R. Effect of sucrose diet on insulin secretion in vivo and in vitro and on triglyceride storage and mobilisation of the heart of rats. Horm Metab Res 1983; 15 (2): 69-76.
11. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Phy-siol 1986; 251 (5 Pt 1): E576-583.
12. Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA. Chan-ges in insulin action, triglycerides, and lipid composition du-ring sucrose feeding in rats. Am J Physiol 1996; 271 (5 Pt 2): R1319-1326.
13. Connor WE. Importance of n-3 fatty acids in health and di-sease. Am J Clin Nutr 2000; 71 (1 Suppl): 171S-175S.
14. Lombardo YB, Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem 2006; 17 (1): 1-13.
15. Goel A, Pothineni NV, Singhal M, Paydak H, Saldeen T, Mehta JL. Fish, fish oils and cardioprotection: promise or fish tale? Int J Mol Sci 2018; 19 (12): E3703; doi: 10.3390/ijms19123703.
16. American Heart Association Nutrition Committee. Diet and lifestyle recommendations revision 2006: a scientific state-ment from the American Heart Association Nutrition Com-mittee. Circulation 2006; 114 (1): 82-96.
17. Barceló-Coblijn G, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for hu-man health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 2009; 48 (6): 355-374.
18. Morales JP, Valenzuela RB, González MD, et al. Nuevas fuen-tes dietarias de acido alfa-linolénico: una visión crítica. Rev Chil Nutr 2012; 39 (3): 79-87.
19. Ullah R, Nadeem M, Khalique A, et al. Nutritional and the-rapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol 2015; 53 (4): 1750-1758.
20. Marcinek K, Krejpcio Z. Chia seeds (Salvia hispanica L.): health promoting properties and therapeutic applications. A review. Rocz Panstw Zakl Hig 2017; 68 (2): 123-129.
21. Busilacchi H, Qüesta T, Zuliani S. La chía como una nueva al-ternativa productiva para la región pampeana. Agromensajes 2015. 41: 37-46.
22. Zar JH. Biostatistical Analysis. 3º Edition, New York; 1996.
23. Neschen S, Moore I, Regittnig W, et al. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am J Physiol Endocrinol Metab 2002; 282 (2): E395-401.
24. Chicco A, D'Alessandro ME, Hein G, Oliva ME, Lombardo YB. Dietary chia seed (Salvia hispanica L.) rich in a-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr 2009; 101: 41-50.
25. Rossi AS, Oliva ME, Ferreira MR, Chicco AG, Lombardo YB. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme ac-tivities in dyslipidaemic insulin-resistant rats. J Nutr Biochem 2013; 24 (6): 1041-1052.
26. Hein G, Bernasconi A, Montanaro M, et al. Nuclear receptors and hepatic lipidogenic enzyme response to a dyslipidemic sucrose-rich diet and its reversal by fish oil n-3 polyunsatu-rated fatty acids. Am J Physiol Endocrinol Metab 2010; 298: 429-439.
27. Chiu CY, Chang TC, Liu SH, Chiang MT. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats. J Food Drug Anal 2017; 25 (4): 919-930.
28. Sampath H, Ntambi JM. Regulation of gene expression by polyunsaturated fatty acids. Heart Metab 2006; 32: 32-35.
29. Rustan A, Hustvedt B, Drevo C. Postprandial decrease in plas-ma unesterified fatty acids during n-3 fatty acid feeding is not caused by accumulation of fatty acids in adipose tissue. BBA 1998; 1390 (3): 245-257.
30. Rossi AS, Lombardo YB, Chicco AG. Lipogenic enzyme acti-vities and glucose uptake in fat tissue of dyslipemic, insulin-resistant rats: Effects of fish oil. Nutrition 2010; 26: 209-217.31. Oliva ME, Ferreira ME, Chicco AG, Lombardo YB. Dietary Sal-ba (Salvia hispanica L.) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glu-cose and lipid metabolism in dyslipidemic insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2013; 89: 279-289.
32. Ferreira MR, Álvarez SM, Illesca P, Giménez MS, Lombardo YB. Dietary Salba (Salvia hispanica L.) ameliorates the adipose tissue dysfunction of dyslipemic insulin-resistant rats through mechanisms involving oxidative stress, inflammatory cytoki-nes and peroxisome proliferator-activated receptor γ. Eur J Nutr 2018; 57 (1): 83-94.
33. Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS. Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 1987; 237 (4817): 885-888.
34. D'Alessandro ME, Chicco AG, Karabatas L, Lombardo YB. Role of skeletal muscle on impaired insulin sensitivity in rats fed a sucrose-rich diet: effect of moderate levels of dietary fish oil. J Nutr Biochem 2000; 11 (5): 273-280.
35. Lalia AZ, Lanza IR. Insulin-sensitizing effects of omega-3 fatty acids: lost in translation? Nutrients 2016; 8 (6): E329; doi: 10.3390/nu8060329.
36. Martín de Santa Olalla L, Sánchez-Muniz FJ, Vaquero MP. N-3 fatty acids in glucose metabolism and insulin sensitivity. Nutr Hosp 2009; 24 (2): 113-127.
37. Luo J, Rizkalla SW, Boillot J, et al. Dietary (n-3) polyunsatura-ted fatty acids improve adipocyte insulin action and glucose metabolism in insulin-resistant rats: relation to membrane fatty acids. J Nutr 1996; 126 (8): 1951-1958.
38. Alexander-Aguilera A, Berruezo S, Hernández-Díaz G, Angu-lo O, Oliart-Ros R. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adi-pose tissue of sucrose-induced obese rats. J Physiol Biochem 2011; 67: 595–604.
39. Ghafoorunissa, Ibrahim A, Rajkumar L, Acharya V. Dietary (n-3) long chain polyunsaturated fatty acids prevent sucrose-in-duced insulin resistance in rats. J Nutr 2005; 135 (11): 2634-8.
40. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 2000; 15 (4): 264-272.
41. Poudyal H, Panchal SK, Ward LC, Brown L. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem 2013; 24 (6): 1041-1052.
42. Creus A, Benmelej A, Villafañe N, Lombardo YB. Dietary Sal-ba (Salvia hispanica L.) improves the altered metabolic fate of glucose and reduces increased collagen deposition in the heart of insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2017; 121: 30-39.
43. Yan L, Zhang JD, Wang B, et al. Quercetin inhibits left ven-tricular hypertrophy in spontaneously hypertensive rats and inhibits angiotensin II-induced H9C2 cells hypertrophy by enhancing PPAR-γ expression and suppressing AP-1 acti-vity. PLoS One 2013; 8 (9): E72548; doi: 10.1371/journal.pone.0072548.
44. Karanja N, Phanouvong T, McCarron DA. Blood pressure in spontaneously hypertensive rats fed butterfat, corn oil, or fish oil. Hypertension 1989; 14 (6): 674-679.
45. Miller PE, Van Elswyk M, Alexander DD. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized contro-lled trials. Am J Hypertens 2014; 27 (7): 885-896.
46. Lombardo YB, Hein G, Chicco AG. Metabolic syndrome: effects of n-3 PUFAs on a model of dyslipidemia, insulin resis-tance and adiposity. Lipids 2007; 42: 427-437.
47. Soria A, Chicco AG, D'Alessandro ME, Rossi A, Lombardo YB. Dietary fish oil reverse epididimal tissue adiposity, cell hy-pertrophy and insulin resistance in dislipemic sucrose fed rat model. J of Nutr Biochem 2002; 13: 209-218.
48. Salim Ferreira de Castro G, Alves dos Santos R, Vannucchi Portari G, Jordão AA, Vannucchi H. Omega-3 improves glu-cose tolerance but increases lipid peroxidation and DNA da-mage in hepatocytes of fructose-fed rats. Appl Physiol Nutr Metab 2012; 37 (2): 233-240.
49. Selenscig D, Rossi A, Chicco AG, Lombardo YB. Increased lep-tin storage with altered leptin secretion from adipocytes of rats with sucrose-induced dyslipidemia and insulin resistance: effect of dietary fish oil. Metabolism 2010; 59: 787-795.
50. Salim de Castro G, Deminice R, Simões-Ambrosio L, Calder PC, Jordão AA, Vannucchi H. Dietary Docosahexaenoic Acid and eicosapentaenoic acid influence liver triacylglycerol and insulin resistance in rats fed a high-fructose diet. Mar Drugs 2015; 13: 1864-1881.
51. Flachs P, Mohamed-Ali V, Horakova O, et al. Polyunsaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. Diabetologia 2006; 49: 394-397.
52. Alexander-Aguilera A, Angulo-Guerrero O, Quintana-Castro R, Soto-Rodríguez I, Sánchez-Otero G, Oliart-Ros RM. CD36 gene expression induced by fish oil in abdominal adipose tissue of rats with Metabolic Syndrome. J Food Nutr Disor 2017; 6: 2.
53. D'Alessandro ME, Chicco A, Lombardo YB. Dietary fish oil re-verses lipotoxicity, altered glucose metabolism, and nPKCep-silon translocation in the heart of dyslipemic insulin-resistant rats. Metabolism 2008; 57 (7): 911-9.
54. Hein G, Chicco A, Lombardo Y. Fish oil normalizes plasma glucose levels and improves liver carbohydrate metabolism in rats fed a sucrose-rich diet. Lipids 2011; 47: 141-150.
55. D'Alessandro ME, Chicco A, Lombardo Y. Fish oil reverses the altered glucose transporter, phosphorylation, insulin recep-tor substrate-1 protein level and lipid contents in the skeletal muscle of sucrose-rich diet fed rats. Prostaglandins Leukot Essent Fatty Acids 2013; 88: 171-177.
56. Ferreira MR, Chicco A, Lombardo YB. Dietary fish oil nor-malized glucose-stimulated insulin secretion in isolated pan-creatic islets of dyslipemic rats through mechanisms involving glucose phosphorylation, peroxisome proliferator-activated receptor γ and uncoupling protein 2. Prostaglandins Leukot Essent Fatty Acids 2013; 89 (1): 31-38.
57. Rossi A, Lombardo YB, Lacorte JM, et al. Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats. Am J Physiol. Integr Comp Physiol 2005; 289: 486-494.
58. Aguilera AA, Hernández Díaz G, Barcelata ML, Angulo Gue-rrero O, Oliart Ros RM. Effects of fish oil on hypertension, plasma lipids, and tumor necrosis factor-alpha in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 2004; 15 (6): 350-357.
59. Lombardo YB, Drago S, Chicco A, et al. Long-term adminis-tration of sucrose-rich diet to normal rats: relationship bet-ween metabolic and hormonal profiles and morphological changes in the endocrine pancreas. Metabolism 1996; 45: 1527-1532.
60. Pighin D, Karabatas L, Rossi A, Chicco A, Basabe JC, Lombar-do YB. Fish oil affects pancreatic fat storage, pyruvate dehy-drogenase complex activity and insulin secretion in rats fed a sucrose-rich diet. J Nutr 2003; 133 (12): 4095-4101.
61. Siddiqui RA, Xu Z, Harvey KA, Pavlina TM, Becker MJ, Za-loga GP. Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content. Nutrition & Meta-bolism 2015; 12, 41. Doi: 10.1186/s12986-015-0038-x.
62. Poudyal H, Panchal SK, Waanders J, Ward LC, Brown L. Li-pid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem 2012; 23 (2): 153-162.
63. Poudyal H, Panchal SK, Ward LC, Waanders J, Brown L. Chro-nic high-carbohydrate, high-fat feeding in rats induces re-versible metabolic, cardiovascular, and liver changes. Am J Physiol Endocrinol Metab 2012; 302 (12): E1472-1482.
64. Da Silva Marineli R, Soares Moura C, Aguiar-Moraes E, et al. Chia (Salvia hispanica L.) enhances HSP, PGC-1a expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 2015; 31(5):740-748.
65. Creus A, Ferreira MR, Oliva ME, Lombardo YB. Mechanisms involved in the improvement of lipotoxicity and impaired lipid metabolism by dietary α-linolenic acid rich Salvia hispanica L.(Salba) seed in the heart of dyslipemic insulin-resistant rats. J Clin Med 2016; 5, 18. Doi: 10.3390/jcm5020018.
66. Selenscing D, Ferreira MR, Chicco A, Lombardo YB. Dietary fish oil ameliorates adipose tissue dysfuction in insulin-resis-tant rats fed a sucrose-rich diet improving oxidative stress, peroxisome proliferator-activated receptor γ and uncoupling protein 2. Food Funct 2018; 9: 2496-2507.
67. Kimura S, Tamayama M, Minami M, Hata N, Saito H. Do-cosahexaenoic acid inhibits blood viscosity in stroke-prone spontaneously hypertensive rats. Res Commun Mol Pathol Pharmacol 1998; 100 (3): 351-361.
68. Kalupahana NS, Claycombe K, Newman SJ, et al. Eicosapen-taenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr 2010; 140 (11): 1915-1922.
69. Sundaram S, Bukowski MR, Lie WR, Picklo MJ, Yan L. High-fat diets containing different amounts of n-3 and n-6 po-lyunsaturated fatty acids modulate inflammatory cytokine production in mice. Lipids 2016; 51 (5): 571-582.
70. Muurling M, Mensink R, Pijl H, Romijn JA, Havekes ML, Vos-hol PJ. A Fish oil diet does not reverse insulin resistance des-pite decreased adipose tissue TNF-α protein concentration in apoE-3*Leiden Mice. J Nutr 2013; 133 (11): 3350-3355.
71. Da Cunha de Sà R, Crisma A, Cru M, et al. Fish oil prevents changes induced by a high-fat diet on metabolism and adi-pokine secretion in mice subcutaneous and visceral adipo-cytes. J Physiol 2016: 594 (21): 6301-6317.
72. Sekhon-Loodu S, Catalli A, Kulka M, Wang Y, Shahidi F, Ru-pasinghe HP. Apple flavonols and n-3 polyunsaturated fatty acid-rich fish oil lowers blood C-reactive protein in rats with hypercholesterolemia and acute inflammation. Nutr Res 2014; 34 (6): 535-543.
73. Lay SL, Simard G, Martínez MC, Andriantsitohaina R. Oxi-dative stress and metabolic pathologies: from an adipo-centric point of view. Oxid Med Cell Longev 2014: doi: 10.1155/2014/908539.
74. Da Silva Marineli R, Alves-Lenquiste S, Aguiar-Moraes E, Ma-róstica MR. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res Int. 2015; 76 (3): 666-674.
75. Taga MSE, Miller EE, Pratt DE. Chia seeds as a source of natu-ral lipid antioxidants. JAOCS 1984; 61 (5): 928-931.
76. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 2007; 21 (12): 1443-1455.




EFFECTS OF DIFFERENT SOURCES OF N-3 FATTY ACIDS (CHIA, VEGETAL AND MARINE, ANIMAL) ON METABOLIC SYNDROME COMPONENTS IN EXPERIMENTAL MODELS (RATS/MOUSES)

SUMMARY

Introduction: the metabolic syndrome (MS) constitutes a constellation of interrelated factors that increase the risk of suffering cardiovascular disease and diabetes mellitus type 2. The composition of the diet is crucial in the modifcation of these factors. Numerous works focused attention on sources of n-3 fatty acids of marine (animal) origin in the management of these disorders, but scarce and more contemporary are those of n-3 of plant sources.
Objectives: to carry out a critical analysis of the experimental scientifc evidence of the effects of a vegetable source (Salvia hispanica L. -chia-) and another animal (marine) of n-3 fatty acids on metabolic alterations present in the SM.
Materials and methods: descriptive and observational study applied to a sample of 32 scientifc articles. The effects of n-3 fatty acids (seed/oil chia and marine oils) on different SMrelated parameters were analyzed in experimental models induced by diets rich in simple sugars and/or fats.
Results: both sources of n-3 improve triglycerides, total cholesterol and plasma free fatty acids levels, glycemia, insulin sensitivity, glucose tolerance, weight of adipose tissue (visceral), systolic blood pressure, size of adipocytes, hepatic triglycerides, proin?ammatory markers and lipogenic and antioxidants enzymes activities.
Conclusions: the vegetable and marine source of n-3 showed benefcial effects on some risk factors of MS, becoming to the seed/oil of chia as a novel alternative to the traditional marine source in the management of these disorders.

Key words: experimental metabolic syndrome; n-3 fatty acids; seed/oil chia; fsh oil.



DESCARGAR TEXTO COMPLETO EN PDF